

0..20'000 l/h

(M)

DN15..DN50

DXMB2P20B.111621

dynamx[™] variable flow-control valves, series DXMB_B

- Electronic pressure-independent flow control
- 2-port or 3-port flow control valves
- Integrated flow measurement
- Integrated ΔT measurement
- Power supply Uv: AC 24Volt
- Flow setpoint via ctrl signal Y1: 0..10Vdc or digital
- MP MultiProtocol : MODBUS RTU and BACnet MSTP communication
- Wireless commissioning through Bluetooth® communication
- Available with integrated application control functions¹⁾

Dynamic Flow Networking®

The dynamx[™] flow-control valves are designed for automatic and dynamic hydronic balancing and real-time flow-control at the same time, thus eliminating the need for extra balancing valves. The *dynamx*[™] flow-control valves provide a perfect hydraulic balance in the hydraulic net, at full load as well as in part load, without any extra components: Dynamic Flow Networking[®] (DFN).

Description

The dynamx[™] Modular valves, series DXMB_B, are electronic, pressureindependent flow-control valves. They combine four functions in one device: 1) a flow-control valve, 2) a dynamic, pressure-independent balancing valve a 3) shut-off valve and 4) an energy-monitoring device.

DXMB_B is used in HVAC systems with variable flow and is designed e.g. for AHU, heat exchangers, etc. DXMB_B replaces the (static) balancing valve, as well as the control valve.

The DXMB_B series are available as 2-port or 3-port valves and can be used in HVAC systems for buildings with a nominal system pressure of 16 bar (PN16) and water temperatures: +5°C..+90°C²⁾ (non-condensing).

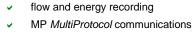
Content

Advantages

automatic balancing V_{max} easily adjustable

permanent flow measurement + control

Bluetooth® on-board communication


4-in-1 solution

EP2307938 EP2706425 EP3812870

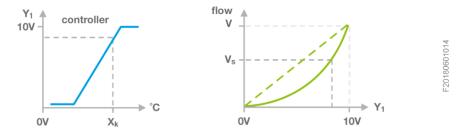
optional

2) the pressures mentioned are maximum values, limited by the maximum admissible temperatures in the pressuretemperature flowchart

1.	How it works	2
2.	Technical specs	3
3.	MP MultiProtocol	4
4.	Electrical connection	5
5.	Flow rate and pressure range	6
6.	Temperature sensors	7
7.	Status LED	8
8.	Wireless commissioning	8
9.	Software tool	8
10.	Related information	9
11.	Intellectual property	9
12.	Dimensions	10
13.	Item reference numbers	11
14.	Ordering information	12

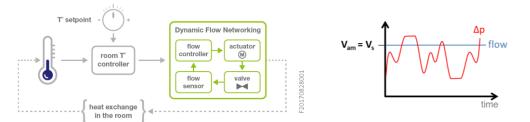
1. How it works

dynamx ™ flow-control valves are designed to accurately control the flow rate in any consumer. To do this, dynamx[™] has 4 basic building blocks, namely a:


- control valve
- drive
- flow sensor
- flow controller

actuator flow controller M flow valve sensor

dynamx


Additional functions can be added on top of these basic building blocks, such as bus communication, wireless communication, additional inputs or for example a water temperature controller.

flow controller In analog mode, the internal flow controller of the dynamxTM valve receives a setpoint from the external controller Y1: 0..10Vdc. Internally this setpoint is converted into a flow setpoint, either for heating or cooling. Example:

The integrated flow sensor measures continuously the actual flow. The intern control loop will compare the actual flow with the desired flow and adjust the position of the control valve until the measured flow is equal to the required flow rate setpoint.

actuator M ł valve

DXMB_B will control the flow rate to a specified set point, independent of any pressure changes in the system at e.g. part load. The control valve automatically adapts to the system parameters and searches for the ideal set point, aiming for maximum user comfort with minimum energy consumption.

Independent of the operating mode, the DXMB_B can be applied for variable or constant flow control or for maximum flow limitation. The feedback signal X1 : 0..10Vdc, reflects the actual flow rate and can be used to monitor the actual flow rate.

Thanks to this innovative technology, the *dynamx*[™] valves can be used in a much larger flow range compared to traditional control valves.

DXMB B has wireless Bluetooth® communication on board, which allows easy wireless commissioning via a smartphone or tablet, even from several meters away.

The dynamx[™] DXMB_B control valves are equipped with MP MultiProtocol communication allowing them to be integrated into both MODBUS and BACnet networks.

 \exists

2. Technical specs	1 2
Electric	
Supply voltage U_v	AC 24 Volts (±20%), 50Hz (±5%)
Power consumption controlling	3,5W (4VA)
stand-by	1,5W
Input signal Y ₁	010Vdc (0.17mA)
Optional sensor input Y ₂	010Vdc (0.17mA)
Feedback signal X ₁	010Vdc (≤ 2mA) actual flow rate, scaled
	according to the max flow rate heating or cooling
Electrical connection ¹⁾	1m PVC cable, 7x 0.5mm ²
Flow rate measurement	
Sensor type	ultrasonic TTM, no moving parts
Unit of measurement	m³/h²) , l/s, l/min, gpm (UK), gpm (US)
Temperature measurement	
Sensor type	Pt1000 in accordance with EN60751
ΔT measurement	paired sensors
Hydraulic	
Nominal pressure	PN16 (16 bar)
Control characteristic	equal percentage ¹⁾ or linear
Differential pressure Δp_{min}	no minimum differential pressure required
Maximum flow rate set point V _{max}	separate heating and cooling setting
Flow rate set point setting	analog (Y_1), via bus communication, or via APP
K _{vs} value	2,9 m/h ³
Medium	water (without glycol)
Medium quality	in accordance with VDI 2035
Medium temperature	+5°C+90°C
Connection	threaded connections
Startup time	35 min. after power on
Material	
Housing	ABS
Parts in contact with water	CW602N brass, CW617N brass, EPDM,

¹⁾ Factory default

composites, stainless steel (1.4401 and 1.4301)

2. Technical specs			2 2
Environment			
Temperature	ambient	+10°C +45°C	
	storage	-20°C +50°C	
IP degree of protection		IP54 (drive IP43)	
Humidity		maximum 90% HR, non-condensing	
Maintenance / calibration		no maintenance nor calibration required	

3. MP MultiProtocol

The $dynamx^{\text{TM}}$ DXMB_B flow-control valves can optionally be supplied with an RS485 bus communication interface with the MP *MultiProtocol* functionality for easy integration¹ into any building management system (BMS).

Thanks to this MP *MultiProtocol* communication, the DXMB_B flow-control valves can be integrated into different types of networks:

- MODBUS
- BACnet
- Bluetooth®

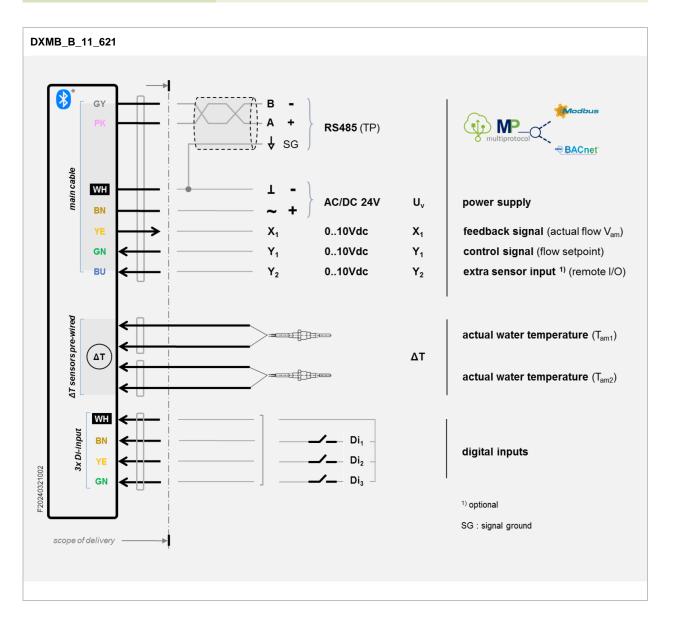
By integrating the $dynamx^{TM}$ control valves into a MODBUS or BACnet network, the set point can also be controlled by the bus, the actual flow rate can be monitored remotely, etc. The bus also provides the ability to customize a selection of settings.

System Integration		
Protocol	MODBUS	RTU/MSTP, slave
	BACnet	MSTP, slave
	Bluetooth®	with license-free APP, dxLink 21™
Physical layer wire	d network	RS485, not isolated
Type of bus cable		2-wire twisted pair with common
		shielded twisted pair STP or FTP
Unit load		1/8
Terminal resistance)	120Ω end resistor (R_{TERM}) to each
		end of the bus
Communication set	tings ²⁾	9600, 19200 or 38400 ³⁾ Baud
		1 starter bit
		even ³⁾ / odd / no parity
		8 data bits
		1 stop bit
Topology		multi-drop bus, maximum length 1,000m
Stub length		maximum 1m, preferably in daisy chain

¹⁾ the installer is responsible for compliance with local EMC regulations when installing, connecting and commissioning the DXMB_B in a communications bus network

²⁾ can be set up via the Bluetooth[®] dxLink21[™] APP or via the dxLink[™] MS Windows commissioning tool via MODBUS communication

3) default settings



4. Electrical connection

(\mathbf{i})	A low voltage transformer should be used in accordance with
Ŀ	local regulations.

In accordance with the Electromagnetic Compatibility Directive 2014/32/EU, according to the applied standards

 A^{201}

dynamx

- EN 61000-3-2 (2014)
- EN 61000-3-3 (2013) EN 61000-6-1 (2007)
- EN 61000-6-3 (2007) (A1: 2011 / AC: 2012)

WН

white

wit

blanc

weiß

BN

brown

bruin

brun

braun

GN

green

aroen

vert

grün

YE

yellow

aeel

jaune

gelb

Individual wires are color coded, no numbering. Color coding according DIN 47100.

BU

blue

blauw

bleu

blau

РК

pink

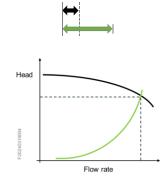
roos

rose

pink

GY

grey


ariis

gris

grau

5. Flow rate and pressure range

To enable optimal sizing and reduce pumping energy to the absolute minimum, $dynamx^{TM}$ flow-control valves, DXMB_B series, are available in 6 different flow ranges.

A²⁰¹

dynamx

During normal operation a differential pressure Δp is generated across the flow-control valve. As a rule of good practice and energy-friendly plant design, control valves at the design flow rate should be selected so that the differential pressure at this design flow rate is as low as possible. When selecting the flow range of the flow-control valve, the actual differential pressure Δp is preferably verified as provided in the BELPARTS calculation tools.

For normal operation and to ensure low-noise operation, it is recommended that the DXMB_B flow-control valves be used at all times with a differential pressure Δp lower than 200kPa.

		Δ	p _s					
Туре	DN	2-port	3-port	K _{vs}	V 5	V ₁₀	V ₂₀	V _{nom}
	[mm]	[kPa]	[kPa] [kPa]		[l/h]	[l/h]	[l/h]	[l/h]
DXMB_P20B_	20	1.400	-	2,9	648	917	1.297	2.900

Flow rate range depending on the differential pressure Δp over the valve

Flow	Δр
V 5	5kPa
V ₁₀	10kPa
V ₂₀	20kPa

Legend

DN	DN size of the valve
Δps	maximum close-off differential pressure
\mathbf{K}_{vs}	K _{vs} -value of DXMB_B
V_{nom}	maximum flow rate of the DXMB_B

 V_{max} design flow rate = maximum flow rate set point in% (max.100% of V_{nom})

1 bar ≈ 100 kPa

1 m/h³ = 1.000 l/h = 16.7 l/min = 0.28 l/s

6. Temperature sensors

DXMB_B flow-control control valves come standard with two paired temperature sensors, for measuring supply and return water temperature. Both temperature sensors T_{am1} and T_{am2} have a free cable length of 2m.

DXMB_B is available with two temperature sensors, for measuring the inand outlet water temperature:

 $\Delta T = T^{\circ}_{in} - T^{\circ}_{out} = |T_{am1} - T_{am2}|$

Both water temperature sensors are electrically connected to the DXMB_B unit ex works and is hydraulically mounted on site.

009056

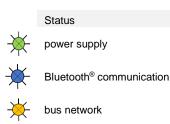
EE

M10x1

F20190327001

In the standard scope of delivery of the DXMB_C, one nipple (1pc, article ref.nr. 009056) is provided for mounting the temperature sensor T_{am2} . This nipple with R½ "external thread is provided with M10x1 female thread for the water temperature sensor T_{am2} .

Remark: other accessories for the mounting of temperature sensors are not part of the delivery and can be ordered separately.



7. Status LED

The integrated LEDs provide useful information that can help with startup and commissioning.

8. Wireless commissioning

Thanks to the integrated Bluetooth® technology, the DXMB_ valves provide a wireless interface for commissioning purposes.

There is no easier way to install and properly commission your hydraulic systems than with the dxLink[™]21 APP.

This function can be used simultaneously with MODBUS or BACnet bus communication.

Note: these features may not be available on all versions, check ordering information

9. Software tool

dxLink™

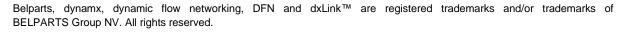
dxLink21™

All dynamx[™] control valves can be easily integrated into any building management system but can also be used as standalone control valves.

dxLink[™] is a software tool that allows dynamx[™] control valves to be commissioned remotely, using the MODBUS bus communication capabilities of the control valves. This means that commissioning of a dynamx[™] control valve does not require onsite intervention but can be performed from a central location. This significantly reduces the time required to commission the HVAC system and makes the system less prone to errors.

The dxLink[™] software works with the Windows operating system.

10. Related information



1	Mounting Instructions		MI 20240319001A
2	MODBUS RTU - register list		MI 20220105001A
3	BACnet MSTP - PICS		MI 20220105002A
4	REVIT data files (BIM)	Ø	www.belparts.com

11. Intellectual property

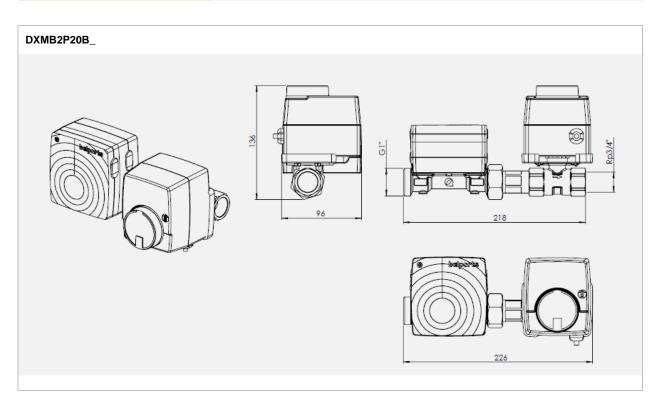
DXMB_B is based on technology protected by international patents:

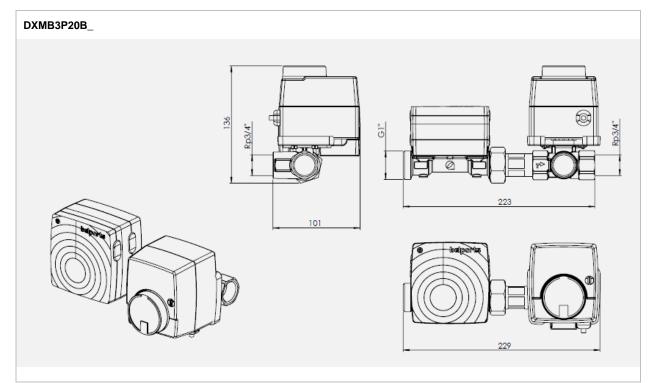
- European Patent No. EP2307938
- European Patent No. EP2706425
- European Patent No. EP3812870
- Chinese patent no. ZL200880130728.9
- United States Patent No. US9823666
- United States Patent No. US10394257
- Registered community model RCD No. 004030633-0001
- Registered community model RCD No. 004030633-0002

MS Windows is a registered trademark of Microsoft Corp. MODBUS is a registered trademark of Schneider Electric. BACnet is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (Ashrae).

The Bluetooth[®] word mark and Bluetooth logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of these marks by BELPARTS Group NV is under license.

A²⁰¹ dynamx

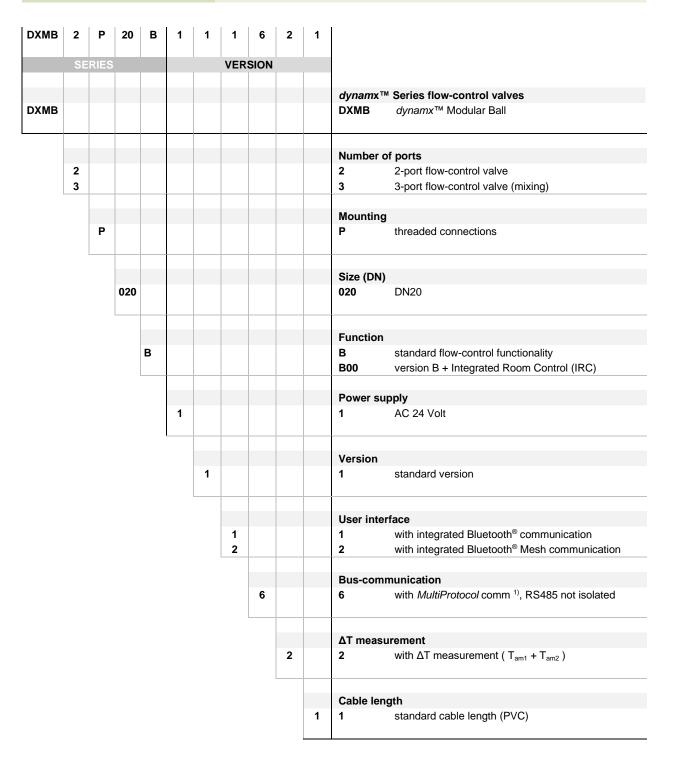



12. Dimensions

(1/2)

A²⁰¹

dynamx



A²⁰¹ dynamx

13. Item reference numbers

¹⁾ MultiProtocol : MODBUS RTU and BACnet MSTP

A²⁰¹ dynamx

									Sensor		C	trl		MultiP	rotocol	
Туре	DN	V_5	V ₁₀	V ₂₀	V _{max}	Uv	Y 1	Flow	Di	ΔТ	Flow	IRC		Þ	_	2
	[mm]	[l/h]	[l/h]	[l/h]	[l/h]	[Volts]	[Volts]									
						<mark>∼</mark> AC		0	\$		0		• • •	88 88 9	MODBUS	BACnet
						24 V	010Vdc		3х							
DXMB2P20B_																
														t	tiprotocol	
			gn flow a 10kPa													

2-port version | with MultiProtocol communication MODBUS RTU or BACnet MSTP

With integrated ΔT measurement Δ DXMB2P020B.111621 20 640 910 1.120 2.900 ●

2-port version | with Bluetooth® Mesh communication

With integrated room temperature control (IRC - Integrated Room Control) and ΔT measurement

DXMB2P020B00.112621	20	640	910 1	.120 2.900	•	•	•	•	•	•	•	-	•	•	•	
	20	040	310 1	1.120 2.300	-	-	-	-	-	-	-	_	-	-	-	1

Legend

•						
DN	valve size	V _{max}	flow rate range (0V _{max})			standard cable length (PVC)
Δp_{s}	maximum close-off differential pressure	V ₅	flow rate at Δp	5kPa		
IRC	with integrated room temperature control	V ₁₀	flow rate at Δp	10kPa		
*	wireless Bluetooth® communication	V ₂₀	flow rate at Δp	20kPa		

Standard design (assembly to order, delivery times may vary)

△ Special design (delivery times on request, min. quantities apply)

A²⁰¹ dynamx

									Sensor		C	tri		MultiP	rotocol	
Туре	DN	V_5	V ₁₀	V ₂₀	V _{max}	Uv	Y 1	Flow	Di	ΔТ	Flow	IRC		Þ	[2
	[mm]	[l/h]	[l/h]	[l/h]	[l/h]	[Volts]	[Volts]							D	•	
						<mark>∼</mark> AC		0	Å	l	0		• • •	жфр	MODBUS	BACnet
DXMB3P20B_	1					24 V	010Vdc		3x							
DANIB3F20D_																
															MP	
		Desi	gn flow a	at ∆p												
		5kPa	10kPa	20kPa												

3-port version | with MultiProtocol communication MODBUS RTU or BACnet MSTP

With integrated ΔT measurement ΔXMB3P020B.111621 20 640 910 1.120 2.900 ● ● ● ● ● ● ●

3-port version | with Bluetooth® Mesh communication

With integrated room temperature control (IRC - Integrated Room Control) and ΔT measurement

DXMB3P020B00.112621	20	640	910	1.120	2.900	•	•	•	•	•	•	•	-	•	•	•	l
DAWD3F020B00.112021	20	040	910	1.120	2.900	-	-	-	-	-	-	-	-	-		-	1

Legend

0						
DN	valve size	V _{max}	flow rate range (0V _{max})	Lc	standard cable length (PVC)
Δp_{s}	maximum close-off pressure	V ₅	flow rate at Δp	5kPa		
IRC	with integrated room temperature control	V10	flow rate at Δp	10kPa		
*	wireless Bluetooth® communication	V ₂₀	flow rate at Δp	20kPa		

Standard design (assembly to order, delivery times may vary)

△ Special design (delivery times on request, min. quantities apply)