

heating / cooling

DN15 / DN25

DXN6C15B.121601

dynamx™ flow-control control valves DXN6_B_6

- For 4-pipe applications with change-over
- · Pressure-independent variable flow control
- Integrated flow measurement
- Supply voltage U_v: AC 24Volt
- Flow setpoint via control signal Y₁: 0..10Vdc, split-range
- · With 3 integrated digital inputs
- MODBUS RTU and BACnet MSTP communication (RS485)
- Wireless commissioning via Bluetooth® communication and/or Bluetooth® mesh
- Optional with integrated room temperature control (IRC)

Dynamic Flow Networking®

The $dynamx^{TM}$ control valves are designed for automatic and hydraulic balancing while providing real-time flow control, eliminating the need for static balancing valves. The $dynamx^{TM}$ control valves provide perfect hydraulic balance in the hydraulic network, both at full and part load, without additional components: Dynamic Flow Networking® (DFN).

Description

The *dynamx*™ 6-port control valve, type DXN6_, combines five functions in one: (1) a changeover valve, (2) a control valve, (3) a pressure-independent balancing valve, (4) a shut-off valve and (5) optionally an integrated room temperature control.

DXN6_ is used in variable-flow HVAC systems and is designed, for example, for air-conditioned ceilings or fan coil units controlled by switching between heating and cooling (4-pipe systems). DXN6_ replaces both the (static) balancing valve, and the readjustment valve.

The DXN6_ made of brass is equipped with a flat coupling ISO228/1 and can be used in HVAC systems for buildings with water temperatures between +5°C..+90°C (non-condensing) with a nominal system pressure of 16 bar (PN16).

Content

1.	How it works	2
2.	Technical specs	4
3.	MP MultiProtocol	5
4.	Electrical connection	6
5.	Hydraulic mounting	10
6.	Flow range	11
7.	Overpressure protection	11
8.	Status LED	12
9.	Bluetooth® commissioning	12
10.	Software tool	12
11.	Accessories	13
12.	Dimensions	14
13.	Article coding	16
14.	Ordering Information	17
15.	DXN6P15B_ (discontinued)	18
16.	Related Information	19
17.	Intellectual property	19

Advantages

- 5-in-1 solution for variable flow rate
- automatic balancing
- ✓ unique V_{max} heating/cooling
- ✓ flow measurement and flow control
- maximum closing pressure 200kPa
- ✓ MP MultiProtocol communications
- → Bluetooth[®] wireless commissioning

Patented technology

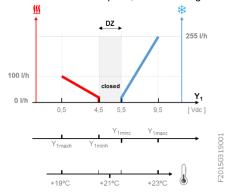
EP2307938 EP2706425 EP3812870 EP3280937 EP3918236 (pending)

belparts*

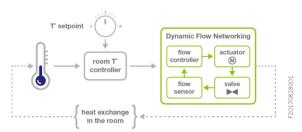
∆612

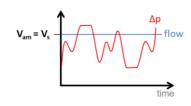
1. How it works

 $Dynamx^{TM}$ flow-control control valves are designed to accurately control flow in any consumer. To do this, $dynamx^{TM}$ has 4 basic building blocks, namely a:


- control valve
- drive
- flow sensor
- flow regulator

Additional functions can be added on top of these basic building blocks, such as bus communication, wireless communication or additional inputs.




In *analog* mode, the internal flow controller of the *dynamx*TM valve receives a set point from the room T° controller via a split-range $Y_1: 0..10Vdc$ control signal (heating: 0.5..4.5Vdc and cooling: 5.5..9.5Vdc). Internally, this set point is converted into a flow set point, either heating or cooling. Example:

The integrated flow sensor continuously measures the actual flow rate. The internal control loop compares the actual flow rate with the required flow rate and adjusts the position of the control valve until the measured flow rate equals the required flow rate set point.

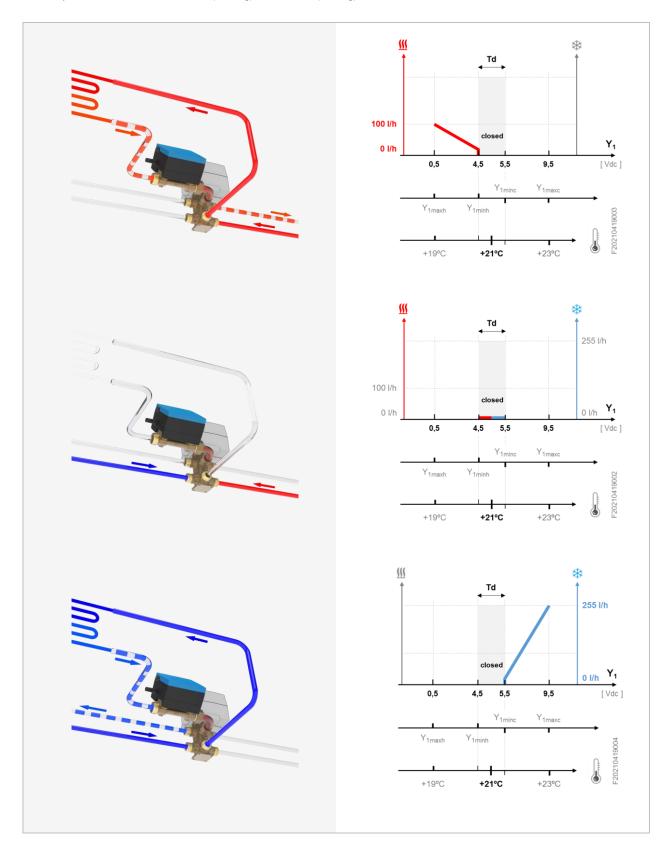
Thus, the DXN6_ will control the flow rate in the direction of the desired setpoint, independent of possible pressure fluctuations in the system, e.g. in case of partial load. The control valve automatically adapts to the system parameters and searches for the ideal set point to ensure maximum user comfort with minimum energy consumption.

The output signal X_1 : 0..10Vdc representing the measured flow can be used to monitor the actual flow rate.

Thanks to this innovative technology, *dynamx*™ control valves can be used in a much larger flow range than conventional control valves.

DXN6_ has wireless Bluetooth® communication on board, which allows easy wireless commissioning via a smartphone or tablet, even with the ceiling closed.

The *dynamx*™ control valves DXN6_ are equipped with MP *MultiProtocol* communication allowing them to be integrated into both MODBUS and BACnet networks.



A⁶¹²

1. How it works

The *dynamx*™ DXN6_ control valves operate as a switch between heating and cooling, where the set design flow rate can be infinitely controlled between 0..Vmaxh (heating) or 0..Vmaxc (cooling).

2. Technical sp	pecs			1 2
Electric				
Supply voltage Consumption Input signal	U _v when controlling standby Y ₁ 0.54.5Vdc 5.59.5Vdc	3.5W (4.5VA) 1,5W 010Vdc (0.17 heating: maxim	20%), 50Hz (±5% mA), split range num flow rate hear maximum flow rat	ting → 0%
Feedback signal Connection 1)	X ₁ main cable DI inputs	according to th	nA) actual flow rate e max flow rate he .7x 0.5mm² or 4x .4x 0.14mm²	eating or cooling
Flow measureme	nt			
Sensor type Unit of measurem	nent		or TTM, no movir n, gpm (UK), gpm	0.
Hydraulic				
Nominal pressure Control character Change-over Leakage rate Differential press Rated flow rate Flow rate setpoin Flow rate set poin Medium Medium quality	vistic $ \begin{array}{cccccccccccccccccccccccccccccccccc$	According to E no minimum di 2bar (200kPa) 1,400 l/h (DN15 separate settin heating and V _n - via an analog - via bus comm	or cooling via Y ₁ or N12266-1: A (air-tifferential pressure 5) - 2,500 l/h (DN2 g design flow V max cooling: 51000 control signal (Y ₁ nunication, or communication ee)	e required 25) of V _{nom}), or
Medium temperat	ure	+5°C+90°C	DI 2035	
Startup time		35min after st	artup	
Fixture		DXN6C15B_	DXN6P15B_ 4)	DXN6P25B_
Heart distance DN size K _{vs} value Flat couplings ISC	O228/1	1.4r	45mm l15 m/h ³ 1x G¾" ⁵⁾	60mm DN25 2.5m/h ³ 6x G1"
Drive Torque Noise level during Manual	g control	min. 8Nm at ra < 30db(A) drive is unlocke	-	

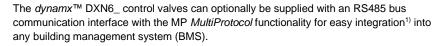
switch

- factory default
- optional
- this series will be discontinued and replaced by DXN6C15B_
- reduction 1x G½" + 1x G¾" available as accessories Item No. 011404 (to be ordered separately)

the number of cores depends on the version number

Modbus

BACnet



2. Technical characteristics

212

Material		
Housing		ABS, PC
Parts in contact with water		CW617N brass, EPDM, PPSU, composites
		, , , , , , , , , , , , , , , , , , , ,
		stainless steel (1.4401, 1.4301)
Surroundings		
Humidity		maximum 90% HR, non-condensing
Maintenance / calibration		no maintenance nor calibration required
IP degree of protection		IP54 (drive IP43)
Temperature	area	+10°C +45°C
	storage	-20°C +50°C
Height		< 2000m

3. MP MultiProtocol

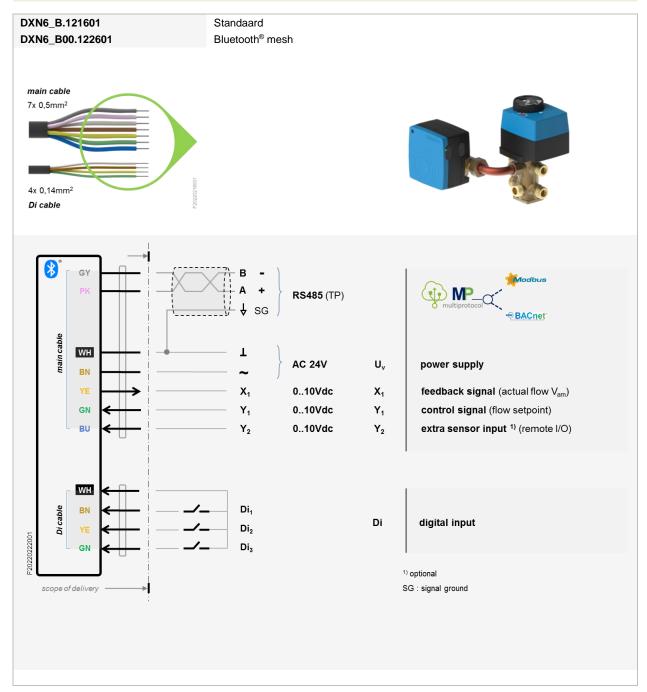
Thanks to this MP MultiProtocol communication, the DXN6_ valves can be integrated into different types of networks:

- **MODBUS**
- **BACnet**
- Bluetooth®

By integrating the *dynamx*™ control valves into a MODBUS or BACnet network, the set point can also be controlled by the bus, the actual flow rate can be monitored remotely, etc. The bus also provides the ability to customize a selection of settings.

System Integration	n					
Protocol	MODBUS	RTU/MSTP, slave				
	BACnet	MSTP, slave				
	Bluetooth [®]	with license-free APP, dxLink 21™				
Physical layer wire	ed network	RS485, not isolated				
Type of bus cable		2-wire twisted pair with common				
		shielded twisted pair STP or FTP				
Unit load		1/8				
Terminal resistance	ce	120Ω end resistor (R_{TERM}) to each				
		end of the bus				
Communication s	ettings 2)	• 9600, 19200 or 38400 ³⁾ Baud				
		1 starter bit				
		• even ³⁾ / odd / no parity				
		8 data bits				
		1 stop bit				
Topology		multi-drop bus, maximum length 1,000m				
Stub length		maximum 1m, preferably in daisy chain				

³⁾ default settings



∆612

4. Electrical connection 1 | 4

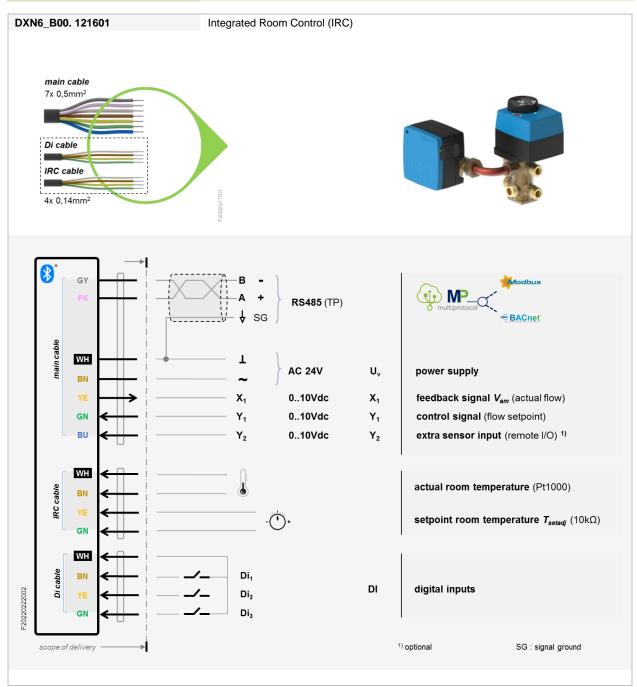
WH	BN	GN	YE	BU	PK	GY
white	brown	green	yellow	blue	pink	grey
wit	bruin	groen	geel	blauw	roos	grijs
blanc	brun	vert	jaune	bleu	rose	gris
weiß	braun	grün gelb		blau	pink	grau

Individual wires are color coded, no numbering. Color coding according DIN 47100.

A low voltage transformer must be used in accordance with local regulations.

With alternating current, always observe the correct polarity!

In accordance with the Electromagnetic Compatibility Directive 2014/32/EU, according to the applied standards


- EN 61000-3-2 (2014)
- EN 61000-3-3 (2013)
- EN 61000-6-1 (2007)
- EN 61000-6-3 (2007) (A1: 2011 / AC: 2012)

A612

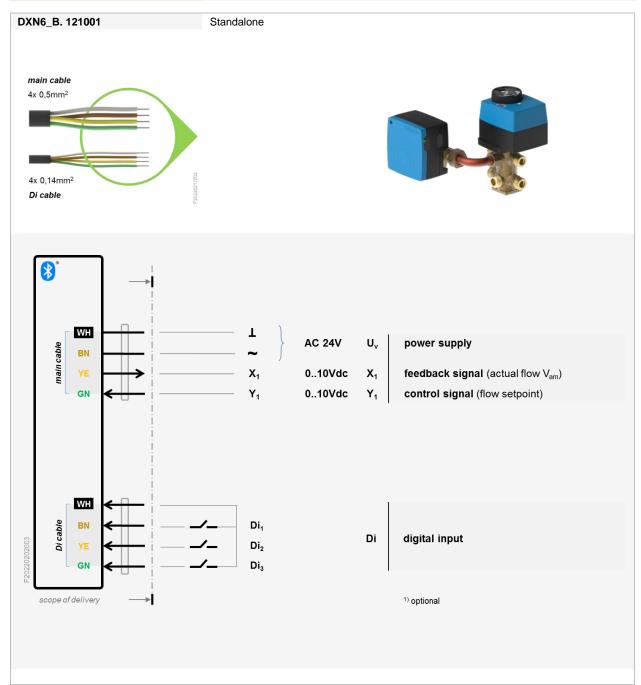
4. Electrical connection 2 | 4

WH	BN	GN	YE	BU	PK	GY
white	brown	green	yellow	blue	pink	grey
wit	bruin	groen	geel	blauw	roos	grijs
blanc	brun	vert	jaune	bleu	rose	gris
weiß	braun	grün	gelb	blau	pink	grau

Individual wires are color coded, no numbering. Color coding according DIN 47100.

- A low voltage transformer must be used in accordance with local regulations.
- With alternating current, always observe the correct polarity!

In accordance with the Electromagnetic Compatibility Directive 2014/32/EU, according to the applied standards


- EN 61000-3-2 (2014)
- EN 61000-3-3 (2013)
- EN 61000-6-1 (2007)
- EN 61000-6-3 (2007) (A1: 2011 / AC: 2012)

∆612

4. Electrical connection 3 | 4

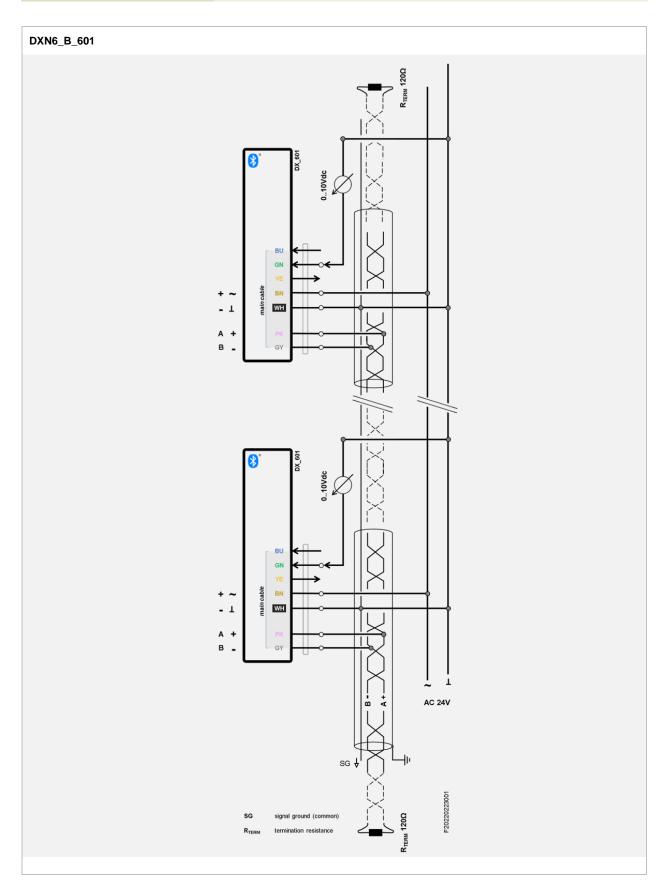
WH	BN	GN	YE	BU	PK	GY
white	brown	green	yellow	blue	pink	grey
wit	bruin	groen	geel	blauw	roos	grijs
blanc	brun	vert	jaune	bleu	rose	gris
weiß	braun	grün	gelb	blau	pink	grau

Individual wires are color coded, no numbering. Color coding according DIN 47100.

A low voltage transformer must be used in accordance with local regulations.

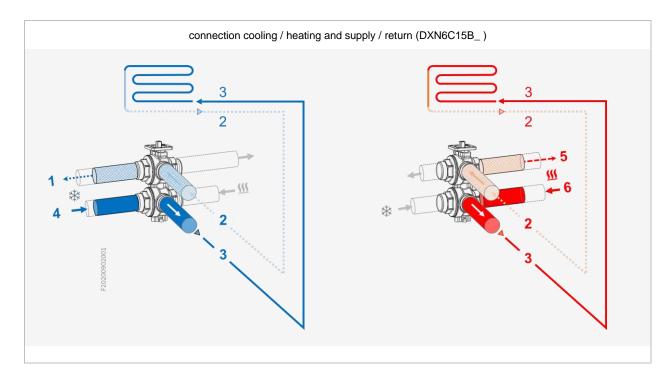
With alternating current, always observe the correct polarity!

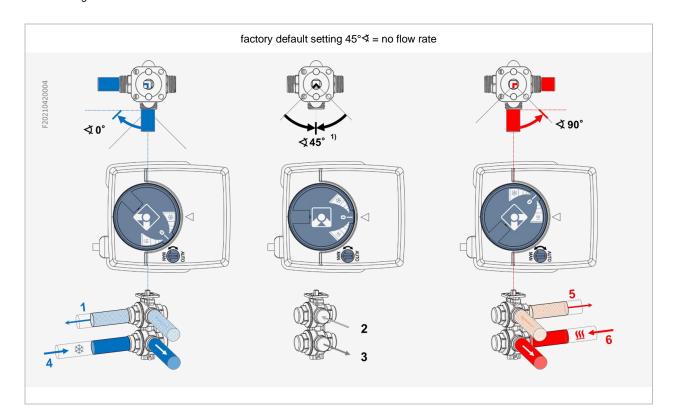
In accordance with the Electromagnetic Compatibility Directive 2014/32/EU, according to the applied standards


- EN 61000-3-2 (2014)
- EN 61000-3-3 (2013)
- EN 61000-6-1 (2007)
- EN 61000-6-3 (2007) (A1: 2011 / AC: 2012)

4 | 4

4. Electrical connection Application example




5. Hydraulic mounting

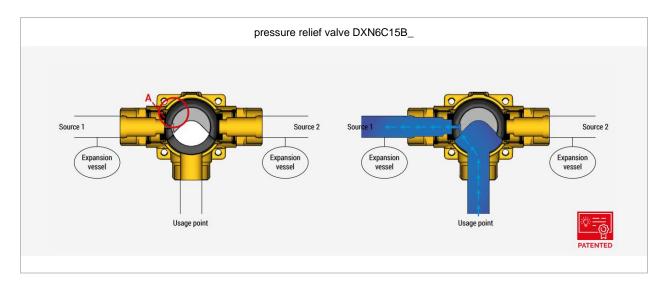
The *dynamx*™ DXN6_ valves have a fixed flow direction and fixed connection for heating and cooling as shown in the drawing below.

Change-over

The *dynamx*™ DXN6_ control valves feature an integrated 6-port ball valve with a 90° rotation angle to switch between heating and cooling.

6. Flow range

To enable optimal sizing and reduce pumping energy to the absolute minimum, *dynamx*™ 6-port control valves, DXN6 series, are available in two different flow ranges.


Туре	DN	K _{vs}	V ₅	V ₁₀	V ₂₀	V_{max}	V_{nom}
	[mm]	[m³/h]	[l/h]	[l/h]	[l/h]	[l/h]	[l/h]
DXN6C15B_	15	1,4	310	440	625	701.400	1.400
DXN6P15B_ 1)	15	1,4	310	440	625	701.400	1.400
DXN6P25B_	25	2,5	555	790	1.115	702.500	2.500

	Legend		flow rate ra	ange at ∆p
	K _{vs}	$K_{\mbox{\tiny VS}}$ value of the DXN6_	V_5	5kPa
1 bar ≈ 100 kPa	V_{max}	design flow	V_{10}	10kPa
1 m/h ³ = 1000 l/h = 16.7 l/min = 0.28 l/s	V_{nom}	maximum flow rate of the DXN6	V_{20}	20kPa

¹⁾ discontinued, replaced by DXN6C15B_

7. Overpressure protection

DXN6_ control valves have integrated overpressure protection to compensate for pressure fluctuations in closed position (\checkmark 45°). The water to the end user (usage point) is isolated when the control valve is in a closed position. The pressure of the water in (e.g.) the climate ceiling can thus increase or decrease when the water temperature changes.

A small opening in the top port of the 6-port control valve, keeps the climate ceiling (point of use) connected to "source 1" (source 1) even when the control valve is closed. However, this opening prevents water from flowing when the valve is closed, and does not compromise the leak-tight seal of the DXN6_ control valve. No water can flow through the end user when the control valve is closed. Thus, the two hydraulic sources heating and cooling, are always separated.

8. Status LED

The integrated LEDs provide useful information that can help with startup and commissioning.

Status

power supply

Bluetooth® communication

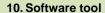
bus network

7

Available on the App Store

9. Bluetooth® commissioning

dxLink21™


Thanks to the integrated Bluetooth® technology, the DXN6_valves provide a wireless interface for commissioning purposes.

There is no easier way to install and properly commission your hydraulic systems than with the dxLink™21 APP.

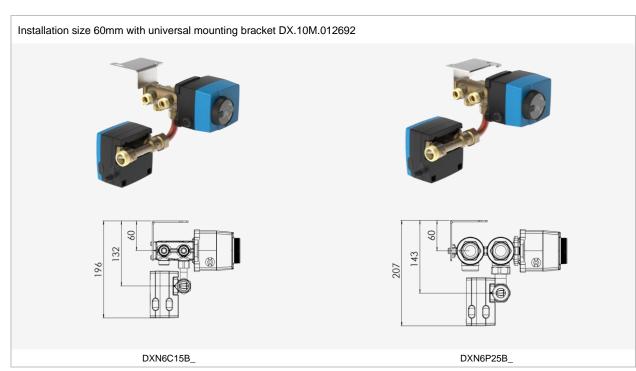
This function can be used simultaneously with MODBUS or BACnet bus communication.

Note: these features may not be available on all versions, check ordering information

dxLink™

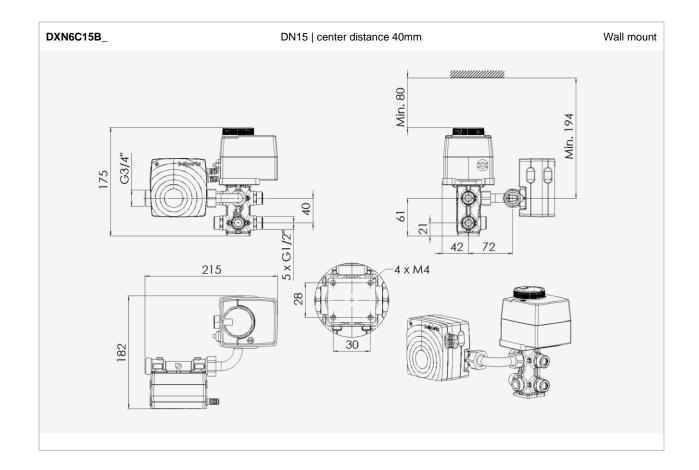
All *dynamx*™ control valves can be easily integrated into any building management system but can also be used as standalone control valves.

dxLink™ is a software tool that allows *dynamx*™ control valves to be commissioned remotely, using the MODBUS bus communication capabilities of the control valves. This means that commissioning of a dynamx™ control valve does not require onsite intervention but can be performed from a central location. This significantly reduces the time required to commission the HVAC system and makes the system less prone to errors.

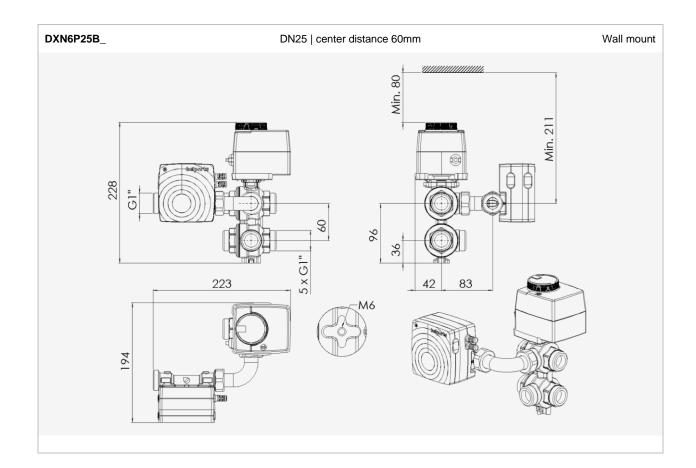

The dxLink™ software works with the Windows operating system.

11. Accessories

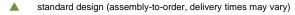
Item	Item		Description						
012692	:::	DX.10M.012692	Universal mounting bracket for DXN6_ (DN15 and DN25)						



Item		Description	
011457		T.BKH.F12M12.RD	Tailpiece with integrated ball valve, red lever
			male G½" x female G½" (cable gland)
011458		T.BKH.F12M12.BL	Tailpiece with integrated ball valve, blue lever
			male $G\frac{1}{2}$ " x female $G\frac{1}{2}$ " (cable gland)
		T D// 00 / To /	
010789		T.BK.G34.T34	Tailpiece with integrated ball valve
	- 9 - 0		female G¾" x female G¾" (swivel)
010788		T.BK.G1.T34	Tailpiece with integrated ball valve
			female G¾" x female G1" (swivel)
011229		T.N6.SBU12	Tailpiece male G½" x female G1" (swivel) for DXN6P25 (2pcs)
010818		T.N6.SBU34	Tailpiece male G¾" x female G1" (swivel) for DXN6P25 (2pcs)
011404		DX.10H.011404	Reduction male G½" x female G¾" for DXN6_ DN15


12. Dimensions All dimensions in [mm] 1 | 2 DXN6C15B_ DN15 | center distance 40mm Ceiling and floor mounting 61 Min. 80 215 72 178 Min. 194 30 G3/4" 183 5 × G1/2" VIEW A

12. Dimensions All dimensions in [mm] 2 | 2 DXN6P25B_ DN25 | center distance 60mm Ceiling and floor mounting 223 36 Min. 80 83 190 Min. 211 M6 228



13. Article coding

Lavari			4=		۱ .	۱.		۱ .		. 1	- ,				
DXN		1	1	В	1	2	1 VED	6 SION	0	1	Example				
	SERIES VERSION						VER	SION							
											-	control valves			
DXN											DXN	dynamx™ ONE			
											November 2	f weeks			
	6										Number of	6-ports 6-port control valve (change-over)			
	•										О	6-port control valve (change-over)			
											Connectio	on (flat couplings ISO228/1)			
		С									C	H15: 40mm (compact version)			
		P									P	H15: 45mm / H25: 60mm			
		•									<u> </u>	1110. 4011111/1120. 0011111			
											DN size				
			15								15	DN15, G1/2"			
			25								25	DN25, G1"			
											Function				
				В							В	standard flow-control functionality			
				B00							B00	version B + Integrated Room Control (IRC)			
					_						Supply vo				
					1						1	AC 24 volts			
											Configura				
						2					2	standard design (90°)			
															
							1				Wireless in	integrated Bluetooth® communication			
							2				2	wireless Bluetooth® mesh networking			
												wheless bluetooth mesh hetworking			
											Bus comm	nunication			
								6			6	with MultiProtocol on RS485 : MODBUS, BACnet			
												and Bluetooth®			
											ΔT measu	irement			
									0		0	without ΔT measurement			
									2		2	with ΔT measurement 1)			
									-			Will 21 Hodouromon			
											Cable leng	ath			
											1	1m PVC cable			
										-					

 $^{^{1)}\}Delta T$ measurement cannot be combined with IRC function (B00)

special design, delivery time on request, min. quantities apply

dynamx

14. Ordering Information

1 | 2

													mul	MP_ tiprotocol	
Туре	Gν	Н	V_5	V ₁₀	V ₂₀	V_{max}	Δps	U _v	Y ₁	Di	IRC	*			_
	[inch]	[mm]	[l/h]	[l/h]	[l/h]	[l/h]	[kPa]	[Volts]	[Volts]	3x	1x		,		•
								AC 24	010Vdc	ļ	IRC		****	MODBUS	BACnet

design	flow rate	e at ∆p
5kPa	10kPa	20kPa

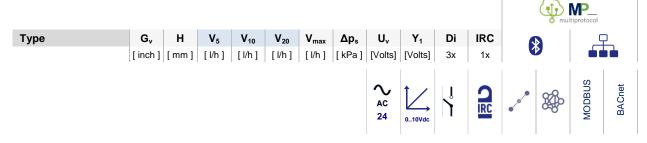
△ DXN6C15B.121001	G½"	40	310	440	625	1.400	200	•	•	•	-	•	-	-	-
▲ DXN6C15B.121601	G½"	40	310	440	625	1.400	200	•	•	•	-	•	-	•	•
▲ DXN6C15B00.121601	G½"	40	310	440	625	1.400	200	•	•	•	•	•	-	•	•
▲ DXN6C15B00.122601	G½"	40	310	440	625	1.400	200	•	•	•	•	-	•	•	•

design	flow rate	e at ∆p
5kPa	10kPa	20kPa

△ DXN6P25B.121001	G1"	60	555	790	1.115	2.500	200	•	•	•	-	•	-	-	-
▲ DXN6P25B.121601	G1"	60	555	790	1.115	2.500	200	•	•	•	-	•	-	•	•
▲ DXN6P25B00.121601	G1"	60	555	790	1.115	2.500	200	•	•	•	•	•	-	•	•
▲ DXN6P25B00.122601	G1"	60	555	790	1.115	2.500	200	•	•	•	•	-	•	•	•

Legend

G _v	connection DXN6_ control valve	Uv	power supply	*	Bluetooth® wireless communication			
Н	center distance DXN6_ control valve	Di	digital inputs	1	one-to-one			
V _{max}	design flow rate	IRC	Integrated Room Control	%	wireless network Bluetooth® mesh			
Δps	maximum shut-off pressure Y ₁ control signal 010Vdc (split range) RS485 TP network							
_	standard design (assembly to order, delivery times may vary)							
	special design, delivery times on reques	t. min. a	uantities apply					



Δ612

15. DXN6P15B_ (discontinued)

2 | 2

DXN6P15B.121601

design flow rate at Δp 5kPa 10kPa 20kPa										
			_		1					
5kPa 10kPa 20kPa	5kPa 10kPa 20kPa	desig	n flow rat	e at ∆p						
		5kPa	10kPa	20kPa						

1) Important note!

Not recommended for new projects! These versions are currently being phased out and will no longer be available starting in 2023.

For DN15 versions, the DXN6C15B_ series is recommended, see page 17.

Legend

G _v	connection DXN6_ control valve	$\mathbf{U}_{\mathbf{v}}$	power supply	8	Bluetooth® wireless communication			
Н	center distance DXN6_ control valve	Di	digital inputs	1	one-to-one			
V _{max}	design flow rate	IRC	Integrated Room Control	%	wireless network Bluetooth® mesh			
Δps	maximum shut-off pressure Y ₁ control signal 010Vdc (split range) RS485 TP network							
	standard design (assembly to order, delivery times may vary)							
Δ	special design, delivery times on request,	min. q	uantities apply					

A612

16. Related Information

1 Assembly Instructions	MI 20210406001A
2 MODBUS register-list	MI 20220105001A
3 BACnet PICS	MI 20220105002A
4 REVIT-data files (BIM)	<u>www.belparts.com</u>

17. Intellectual property

DXN6_ is based on technology protected by international patents:

- European Patent No. EP2307938
- European Patent No. EP2706425
- European Patent No. EP3812870
- European Patent No. EP3280937
- European Patent No. EP3918236 (patent pending)
- Chinese Patent no. ZL200880130728.9
- United States Patent No. 9823666
- United States Patent No. 10394257
- Registered community model RCD No. 004030633-0001
- Registered community model RCD No. 004030633-0002

Belparts, dynamx, dynamic flow networking, DFN and dxLink are registered trademarks and/or trademarks of the NV BELPARTS Group. All rights reserved.

MS Windows is a registered trademark of Microsoft Corp. MODBUS is a registered trademark of Schneider Electric. BACnet is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (Ashrae).

The Bluetooth® word mark and Bluetooth logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of these marks by NV BELPARTS Group is under license.

A^{612}
dynamx

Notes	